Маленькие гэс. Малые гэс россии. Микро и малые ГЭС

В последнее время, из-за роста тарифов на электроэнергию, все более актуальными становятся возобновляемые источники практически бесплатной энергии.

Малая гидроэлектростанция или малая ГЭС (МГЭС ) - гидроэлектростанция, вырабатывающая сравнительно малое количество электроэнергии и основано на гидроэнергетических установках мощностью от 1 до 3000 кВт. Общепринятого для всех стран понятия малой гидроэлектростанции нет, в качестве основной характеристики таких ГЭС принята их установленная мощность.

Установки для малой гидроэнергетики классифицируют по мощности на:

  • оборудование для мини гидроэлектростанции мощностью до 100 кВт;
  • оборудование для микро гидроэлектростанций мощностью до 1000 кВт.

Из известной классической триады: солнечные батареи , ветрогенераторы, гидрогенераторы (ГЭС), последние наиболее сложные. Они, во-первых, работают в агрессивных условиях, а во-вторых, имеют максимальную наработку за равный промежуток времени.

Наиболее просто делать бесплотинные ГЭС, т.к. сооружение плотины достаточно сложное и дорогое дело и часто требует согласования с местными властями или, по крайней мере, с соседями. Бесплотинные мини ГЭС называют проточными. Существует четыре основных варианта таких устройств.

Типы мини ГЭС

Водяное колесо - это колесо с лопастями, установленное перпендикулярно поверхности воды. Колесо погружено в поток меньше чем наполовину. Вода давит на лопасти и вращает колесо. Существуют также колеса-турбины со специальными лопатками, оптимизированными под струю жидкости. Но это достаточно сложные конструкции скорее заводского, чем самодельного изготовления.

Гирляндная мини-ГЭС - представляет собой трос, с жестко закрепленными на нем роторами. Трос перекинут с одного берега реки на другой. Роторы как бусы нанизаны на трос и полностью погружены в воду. Поток воды вращает роторы, роторы вращают трос. Один конец троса соединен с подшипником, второй с валом генератора.

Ротор Дарье - это вертикальный ротор, который вращается за счет разности давлений на его лопастях. Разница давлений создается за счет обтекания жидкостью сложных поверхностей. Эффект подобен подъемной силе судов на подводных крыльях или подъемной силе крыла самолета.

Пропеллер - это подводный «ветряк» с вертикальным ротором. В отличие от воздушного, подводный пропеллер имеет лопасти минимальной ширины. Для воды достаточно ширины лопасти всего в 2 см. При такой ширине будет минимальное сопротивление и максимальная скорость вращения. Такая ширина лопастей выбиралась для скорости потока 0.8-2 метра в секунду. При больших скоростях, возможно, оптимальны другие размеры.

Достоинства и недостатки различных систем миниГЭС

Недостатки гирляндной МГЭС очевидны: большая материалоемкость, опасность для окружающих (длинный подводный трос, скрытые в воде роторы, перегораживание реки), низкий КПД. Гирляндная ГЭС – это небольшая плотина. Ротор Дарье сложен в изготовлении, в начале работы его нужно раскрутить. Но он привлекателен тем, что ось ротора расположена вертикально и отбор мощности можно производить над водой, без дополнительных передач. Такой ротор будет вращаться при любом изменении направления потока.

Таким образом, с точки зрения простоты изготовления и получения максимального КПД с минимальными затратами, необходимо выбрать конструкцию типа водяное колесо или пропеллер .

Конструкция малой гидростанции

Конструкция малой ГЭС базируется на гидроагрегате, который включает в себя энергоблок, водозаборное устройство и элементы управления. В зависимости от того, какие гидроресурсы используются малыми гидростанциями, их делят на несколько категорий:

Русловые или приплотинные станции с небольшими водохранилищами;

Стационарные мини ГЭС, использующие энергию свободного течения рек;

МГЭС, использующие существующие перепады уровней воды на различных объектах водного хозяйства;

Мобильные мини ГЭС в контейнерах, с применением в качестве напорной деривации пластиковых труб или гибких армированных рукавов.

Разновидности гидроагрегатов для малых гидроэлектростанций

Основой для малой гидростанции является гидроагрегат, который, в свою очередь, базируется на турбине того или иного вида. Существуют гидроагрегаты с:

Осевыми турбинами;

Радиально-осевыми турбинами;

Ковшовыми турбинами;

Поворотно-лопастными турбинами.

МГЭС классифицируются и в зависимости максимального использования напора воды на :

Высоконапорные - более 60 м;

Средненапорные - от 25 м;

Низконапорные - от 3 до 25 м.

От того, какой напор воды использует микрогидроэлектростанция, различаются и виды применяемых в оборудовании турбин. Ковшовые и радиально-осевые турбины разработаны для высоконапорных ГЭС. Поворотно-лопастные и радиально-осевые турбины применяются на средненапорных станциях. На низконапорных малых гидростанциях(МГЭС) устанавливают в основном поворотно-лопастные турбины в железобетонных камерах.

Что касается принципа работы турбины мини ГЭС, то он во всех конструкциях практически идентичен: вода под напором поступает на лопасти турбины, которые начинают вращаться. Энергия вращения передается на гидрогенератор, который отвечает за выработку электроэнергии. Турбины для объектов подбираются в соответствии с некоторыми техническими характеристиками, среди которых главной остается напор воды. Кроме того, турбины выбираются в зависимости от вида камеры которая идет в комплекте - стальной или железобетонной.

Мощность миниГЭС зависит от напора и расхода воды, а также от КПД используемых турбин и генераторов. Из-за того, что по природным законам уровень воды постоянно меняется, в зависимости от сезона, а также еще по ряду причин, в качестве выражения мощности гидроэлектрической станции принято брать цикличную мощность. К примеру, различают годичный, месячный, недельный или суточный циклы работы.

При выборе мини ГЭС стоит ориентироваться на такое энергетическое оборудование, которое было бы адаптировано под конкретные нужды объекта и отвечало таким критериям, как:

Наличие надежных и удобных в эксплуатации средств управления и контроля над работой оборудования;

Управление оборудованием в автоматическом режиме с возможностью перехода при необходимости на ручное управление;

Генератор и турбина гидроагрегата должны иметь надежную защиту от вероятных аварийных ситуаций;

Площади и объемы строительных работ для установки малых ГЭС должны быть минимальными.

Выгоды использования мини-ГЭС:

Гидроэлектростанции малой мощности обладают целым рядом преимуществ, которые делают это оборудование все более популярным. Прежде всего, стоит отметить экологическую безопасность мини ГЭС – критерий, который становится все более важным в свете проблем защиты окружающей среды. Малые гидроэлектростанции не возникает вредного влияния ни на свойства, ни на качество воды. Акватории, где устанавливается гидроэлектростанция малой мощности, можно использовать как для рыбохозяйственной деятельности, так и в качестве источника водоснабжения населенных пунктов. Кроме того, для работы малых ГЭС нет необходимости в наличии больших водоемов. Они могут функционировать, используя энергию течения небольших рек и даже ручьев.

Что касается экономической эффективности, то и здесь у микро и мини гидроэлектростанций есть немало преимуществ. Станции, разработанные с учетом современных технологий, отличаются простой в управлении, они полностью автоматизированы. Таким образом, оборудование не требуют присутствия человека. Специалисты отмечают, что и качество тока, вырабатываемого малыми ГЭС, соответствует требованиям ГОСТа как по напряжению, так и по частоте. При этом, мини ГЭС могут действовать как автономно, так и в составе электросети.

Говоря о малых гидроэлектростанциях, стоит отметить и такое их преимущество, как полный ресурс их работы, который составляет не менее 40 лет. Ну а главное - объекты малой энергетики не требуют организации больших водохранилищ с соответствующим затоплением территории и колоссальным материальным ущербом.

Одним из важнейших экономических факторов является вечная возобновляемость гидротехнических ресурсов. Если подсчитать буквальную выгоду от применения малых ГЭС, то выяснится, что электроэнергия вырабатываемая ими практически в 4 раза дешевле электроэнергии, которую потребитель получает от теплоэлектростанций. Именно по этой причине сегодня ГЭС все чаще находят применение для электроснабжения электроёмких производств.

Не забудем и о том, что малые ГЭС не требуют приобретения какого-либо топлива. К тому же они отличаются сравнительно простой технологией выработки электроэнергии, в результате чего затраты труда на единицу мощности на ГЭС почти в 10 раз меньше, чем на ТЭЦ .



Бесплотинная всесезонная гидроэлектростанция

Предлагается бесплотинная всесезонная гидроэлектростанция (БВГЭС), которая предназначена для выработки электроэнергии без сооружения плотины за счет использования энергии самотечного потока.

За счет изготовления различных типоразмеров под разные скорости течения, а также каскадного монтажа установки БВГЭС могут использоваться как в малых хозяйствах так и для промышленного производства электроэнергии, особенно в местах, удаленных от ЛЭП.

Конструктивно ротор ГЭС устанавливается вертикально, высота ротора от 0,25до2,5м…Фиксация конструкции на реках с ледоставом производится на дне русла, а в открытом (незамерзающем русле) __ на закрепленном катамаране.

Мощность установки пропорциональна площади лопасти и скорости течения в кубе. Зависимость мощности, получаемой на валу БВГЭС от ее размеров и скорости течения, а также оценочная стоимость гидроагрегата представлена в следующей таблице:

Мощность БВГЭС, кВт в зависимости от скорости потока и размеров установки

Срок окупаемости установки не превышает 1 года. Опытный образец БВГЭС прошел испытания на натурном водном полигоне.

В настоящее время имеется техническая документация для производства промышленных образцов по техническим условиям заказчика.

Напорные микро-и малые ГЭС

Гидроагрегаты для малых ГЭС предназначены для эксплуатации в широком диапазоне напоров и расходов с высокими энергетическими характеристиками.

МикроГЭС — надежные, экологически чистые, компактные, быстроокупаемые источники электроэнергии для деревень, хуторов, дачных поселков, фермерских хозяйств, а также мельниц, хлебопекарен, небольших производств в отдаленных горных и труднодоступных районах, где нет поблизости линий электропередач, а строить такие линии сейчас и дольше и дороже, чем приобрести и установить микроГЭС.

В комплект поставки входят: энергоблок, водозаборное устройство и устройство автоматического регулирования.

Имеется успешный опыт эксплуатации оборудования на перепадах уже существующих плотин, каналов, систем водоснабжения, и водоотведения промышленных предприятий и объектов городского хозяйства, очистных сооружений, оросительных систем и питьевых водоводов. Более 150 комплектов оборудования поставлено заказчикам в различные регионы России, страны СНГ, а также в Японию, Бразилию, Гватемалу, Швецию и Латвию.

Основные технические решения, использованные при создании оборудования, выполнены на уровне изобретений и защищены патентами.

1. МИКРОГИДРОЭЛЕКТРОСТАНЦИИ

с пропеллерным рабочим колесом
— мощностью до 10 кВт (МГЭС-10ПР) на напор 2,0-4,5 м и расход 0,07 — 0,14 м3/с;
— мощностью до 10 кВт (МГЭС-10ПР) на напор 4,5-8,0 м и расход 0,10 — 0,21 м3/с;
— мощностью до 15 кВт (МГЭС-15ПР) на напор 1,75-3,5 м и расход 0,10 — 0,20 м3/с;
— мощностью до 15 кВт (МГЭС-15ПР) на напор 3,5-7,0 м и расход 0,15 — 0,130м3/с;
— мощностью до 50 кВт (МГЭС-50ПР) на напор 4,0-10,0 м и расход 0,36 — 0,80 м3/с;

с диагональным рабочим колесом
— мощностью10- 50 кВт (МГЭС-50Д) на напор 10,0-25,0 м и расход 0,05 — 0,28 м3/с;
— мощностью до100кВт (МГЭС-100Д) на напор 25,0-55,0 м и расход 0,19 — 0,25 м3/с;

2. ГИДРОАГРЕГАТЫ ДЛЯ МАЛЫХ ГЭС

Гидроагрегаты с осевыми турбинами мощностью до 1000 кВт;
-гидроагрегаты с радиально-осевыми турбинами мощностью до 5000 кВт;
-гидроагрегаты с ковшовыми турбинами мощностью до 5000 кВт;

СРОКИ ПОСТАВКИ

МикроГЭС10кВт; 15кВт поставляется в срок до 3 месяцев после подписания контракта.
МикроГЭС 50кВт; поставляется в срок до 6 месяцев после подписания контракта.
МикроГЭС 100кВт; поставляется в срок до 8 месяцев после подписания контракта.
Гидроагрегаты поставляется в срок от 6 до 12 месяцев после подписания контракта.

Специалисты фирмы готовы помочь Вам определить оптимальный вариант установки микро-и малых ГЭС, выбрать оборудование для них, оказать помощь в монтаже и пуске гидроагрегатов, а также обеспечить сервисное обслуживание оборудования в
процессе его эксплуатации.

СТОИМОСТЬ ОБОРУДОВАНИЯ

Микро-ГЭС российского производства

Внешний вид

Микро-ГЭС 10 кВТ

Микро-ГЭС 50 кВт

ИнжИнвестСтрой

Мини ГЭС. Микрогидроэлектростанции

Малая гидроэлектростанция или малая ГЭС (МГЭС) – гидроэлектростанция, вырабатывающая сравнительно малое количество электроэнергии и состоящая из гидроэнергетических установок с установленной мощностью от 1 до 3000 кВт.

Микро-гидроэлектростанция предназначена для преобразования гидравлической энергии потока жидкости в электрическую для дальнейшей передачи сгенерированной электроэнергии в энергосистему.

Под термином микро подразумевается, что данная гидроэлектростанция устанавливается на малых водных объектах – небольших речках или даже ручьях, технологических протоках или перепадах высот систем водоподготовки, а мощность гидроагрегата не превышает 10 кВт.

МГЭС разделяют на два класса: это микро-гидроэлектростанции (до 200 кВт) и мини-гидроэлектростанции (до 3000 кВт). Первые применяются в основном в домохозяйствах, и на небольших предприятиях, вторые – на более крупных объектах.

Для владельца загородного дома или небольшого бизнеса, очевидно больший интерес представляют первые.

Исходя из принципа действия, микро-гидроэлектростанции разделяют на следующие типы:

Водяное колесо . Это колесо с лопастями, установленное перпендикулярно поверхности воды и наполовину в неё погруженное. В процессе работы вода давит на лопасти и заставляет вращаться колесо.

С точки зрения простоты изготовления и получения максимального КПД с минимальными затратами, эта конструкция хорошо работает.

Поэтому часто применяется и на практике.

Гирляндная мини-ГЭС . Представляет собой перекинутый с одного берега реки на другой трос с жестко закрепленными на нем роторами. Поток воды вращает роторы, а от них вращение передаётся на трос, один конец которого соединен с подшипником, а второй – с валом генератора.

Недостатки гирляндной ГЭС: большая материалоемкость, опасность для окружающих (длинный подводный трос, скрытые в воде роторы, перегораживание реки), низкий КПД.

Ротор Дарье .

Это вертикальный ротор, который вращается за счет разности давлений на его лопастях. Разница давлений создается за счет обтекания жидкостью сложных поверхностей. Эффект подобен подъемной силе судов на подводных крыльях или подъемной силе крыла самолета. Фактически, МГЭС данной конструкции идентичны одноименным ветрогенераторам, но располагаются в жидкостной среде.

Ротор Дарье сложен в изготовлении, в начале работы его нужно раскрутить.

Но он привлекателен тем, что ось ротора расположена вертикально и отбор мощности можно производить над водой, без дополнительных передач. Такой ротор будет вращаться при любом изменении направления потока. Как и у его воздушного собрата, КПД ротора Дарье уступает КПД МГЭС пропеллерного типа.

Пропеллер .

Это имеющий вертикальный ротор подводный «ветряк», который в отличие от воздушного, имеет лопасти минимальной ширины всего в 2 см. Такая ширина обеспечивает минимальное сопротивление и максимальную скорость вращения и выбиралась для наиболее часто встречающейся скорости потока – 0.8-2 метра в секунду.

Пропеллерные МГЭС , также как и колесные, просты в изготовлении и обладают сравнительно высоким КПД, их частое применение этим и обусловлено.

Классификация Мини ГЭС

Классификация по вырабатываемой мощности (области применения) .

Вырабатываемая микро ГЭС мощность определяется сочетанием двух факторов, первый это напор воды, поступающей на лопасти гидротурбины, которая приводит в действие вырабатывающий электроэнергию генератор, и второй фактор – расходом, т.е.

объемом воды, проходящем, через турбину за 1 секунду. Расход является определяющим фактором при отнесении ГЭС к определенному типу.

По вырабатываемой мощности МГЭС подразделяются на:

  • Бытовые мощностью до 15 кВт: используются для обеспечения электроэнергией частных домовладений и ферм.
  • Коммерческие мощностью до 180 кВт: питают электроэнергией небольшие предприятия.
  • Промышленные мощностью свыше 180 кВт: генерируют электроэнергию на продажу, либо энергия передается на производство.

Классификация по конструкции


Классификация по месту установки

  • Высоконапорные — более 60 м;
  • Средненапорные — от 25 м;
  • Низконапорные — от 3 до 25 м.

Данная классификация подразумевает, что электростанция работает на разных частотах вращения, и для ее механической стабилизации принимается ряд мер, т.к.

скорость потока зависит от напора.

Составные части Мини ГЭС

Электрогенерирующая установка малой ГЭС состоит из турбины, генератора и системы автоматического управления. Часть элементов системы аналогичны для систем солнечной генерации или ветряной генерации. Основные элементы системы:

  • Гидротурбина с лопатками, соединённая валом с генератором
  • Генератор .

    Мини гидроэлектростанция (ГЭС) для дома

    Предназначен для выработки переменного тока. Присоединяется к валу турбины. Параметры генерируемого тока быть относительно нестабильны, однако ничего похожего на скачки мощности при ветряной генерации не происходит;

  • Блок управления гидротурбиной обеспечивает пуск и останов гидроагрегата, автоматическую синхронизацию генератора при подключении к энергосистеме, контроль режимов работы гидроагрегата, аварийную остановку.
  • Блок балластной нагрузки , предназначенный для рассеивания неиспользуемой потребителем на данный момент мощность, позволяет избежать выхода из строя электрогенератора и системы контроля и управления.
  • Контроллер заряда/ стабилизатор : предназначен для управления зарядом аккумуляторных батарей, контроля поворота лопастей и преобразования напряжения.
  • Банк АКБ : накопительная ёмкость, от размера которой зависит продолжительность функционирования в автономном режиме питаемого ею объекта.
  • Инвертор , во многих гидрогенерирующих системах применяются инверторные системы. При наличии банка АКБ и контроллера заряда, гидросистемы мало чем отличаются от других систем, применяющих ВИЭ.

Мини ГЭС для частного дома

Рост тарифов на электроэнергию и отсутствие достаточных мощностей, делают актуальными вопросы о применение бесплатной энергии возобновляемых источники в домашних хозяйствах.

По сравнению с другими источниками ВИЭ, мини ГЭС представляют интерес, так как при равной мощности с ветряком и солнечной батареей они способны выдать за равный промежуток времени гораздо больше энергии.

Естественное ограничение на их применение является отсутствие реки

Если возле вашего дома протекает небольшая река, ручей или имеют место перепады высот на озерных водосбросах, то значит у вас имеются все условия для установки мини ГЭС. Потраченные на её приобретение деньги быстро окупятся – вы будете в любое время года обеспечены дешёвой электроэнергией, независимо от погодных условий и иных внешних факторов.

Основным показателем, который указывает на эффективность использования МГЭС является скорость потока водоема.

Если скорость меньше 1 м/с, то необходимо принять дополнительные меры по его разгону, например, сделать обводной канал переменного сечения или организовать искусственный перепад высот.

Преимущества и недостатки микрогидроэнергетики

К преимуществам мини гэс для дома можно отнести:

  • Экологическая безопасность (с оговорками для рыб-мальков) оборудования и отсутствие необходимости затопления больших площадей с колоссальным материальным ущербом;
  • Экологическая чистота получаемой энергии.

    Отсутствует влияние на свойства и качество воды. Водоемы можно использовать и для рыбохозяйственной деятельности, и как источники водоснабжения населения;

  • Низкую стоимость получаемой электроэнергии, которая в разы дешевле вырабатываемой на ТЭС;
  • Простоту и надёжность применяемого оборудования, и возможность его работы в автономном режиме (как в составе, так и вне сети электроснабжения).

    Вырабатываемый ими электрический ток соответствует требованиям ГОСТа по частоте и напряжению;

  • Полный ресурс работы станции — не менее 40 лет (не менее 5 лет до капитального ремонта);
  • неисчерпаемость используемых для выработки энергии ресурсов.

Основной недостаток микро-гэс это относительная опасность для обитателей водной фауны, т.к. вращающиеся лопатки турбин, особенно в скоростных потоках, могут представлять угрозу для рыб или мальков.

общая информация

Микрогидроэлектростанция (Micro HPP) предназначена для обеспечения электроснабжения потребителя, изолированного от энергосистемы.

Полнота поставки микро-ГЭС приведена в таблице 1

Условия эксплуатации:

— температура воздуха, 0 ° C

— в точке питания от -10 до +40;

— в месте расположения электрических шкафов от 0 до +40;

— высота над уровнем моря, м до 1000; (При установке микро-ГЭС на высоте более 1000 м максимальная мощность должна быть ограничена)

— относительная влажность воздуха в месте расположения электрических шкафов не превышает 98% при t = + 250 ° C.

Гарантийный срок для микроГЭС 1 год с даты его запуска, но не более 1,5 лет с даты отправки, возведение контроля и ввод в эксплуатацию работы с участием компании и соблюдение правил транспорта, хранения и эксплуатации экспертов.

Полная поставка микро-ГЭС

Таблица 1

технические данные

Спецификации MicroHP приведены в таблице 2

Таблица 2

параметр

Голова (нетто), м

Расход воды, м3 / с

Выходная мощность, кВт

Скорость вращения, об / мин

Напряжение, В

Текущая частота, Гц

Диаметр диска, мм

Диаметр подачи, мм

Требования к сети и нагрузке потребителя (нагрузка определяется как процент от фактического поступления на микро-ГЭС):

— характеристика местного, четырехфазного, трехфазного;

— мощность каждого двигателя,% не более 10;

Общая мощность двигателя, если установлены дополнительные компенсационные конденсаторы,% не более 30.

ДИЗАЙН

Блок питания предназначен для выработки электроэнергии и состоит из гидравлической турбины и асинхронного двигателя, который используется в качестве генератора.

Он предназначен для поглощения избыточной активной мощности микро-ГЭС. BNN — это шкаф, внутри которого расположены термоэлектрические нагреватели.

Устройство автоматического управления предназначено для управления и защиты привода. Он обеспечивает возбуждение асинхронного генератора и автоматическое управление производимым напряжением и частотой.

UAR обеспечивает защиту от перегрузки, перенапряжения и коротких замыканий

Устройство подачи воды выполнено в виде сетевого ящика, внутри которого имеется шланг подачи воды с закрывающим корпусом.

Устройство подачи воды сконструировано таким образом, что плавающие остатки не входят в привод.

Полные, монтажные и присоединительные размеры показаны на рисунке 1.

требования к установке

Для работы микроэлектростанции наличие давления (разница в уровнях воды) является предварительным условием (см. Рисунок 2).

Полноэкранная гидроэлектрическая плотина

Голова может быть получена из-за разницы в водяных знаках между:

— две реки;

— озеро и река;

— на той же реке, из-за выравнивания кривой.

Давление также возможно при строительстве плотины.

На рисунке 2 показана установка микро HP в соответствии со схемой конструкции барьера. Для создания давления на турбину вдоль реки, которая имеет множество склонов и порогов, установлен выходной трубопровод.

Небольшая каменная плотина рассеивается, чтобы увеличить давление.

Трубопровод должен обеспечивать воду для установки с минимальной потерей головки.

Длина трубопровода определяется местными условиями.

Перед блоком питания входной и основной клапаны, необходимые для запуска и остановки микро HPW, должны быть установлены на трубопроводе.

Рис. 1
В общем, размеры монтажа и подключения Micro HPP 10Pr.
1 — привод,
2 — блочная балластная нагрузка BBN,
3 — Автоматическое устройство управления UAR

Когенерационные установки малой мощности (обзор)

Когенерационные установки для индивидуальных домов — микро-ТЭЦ, «Микро-CHP (microCHP )» – аббревиатура от “heat and power combined ” (комбинирование тепла и электричества) – это установка, предназначенная для отопления индивидуального жилья) — одно из наиболее интересных направлений развития отопительной техники.

Микро-ТЭЦ (microCHP ) уже нашли тысячи пользователей и войдут в каталоги производителей в ближайшие годы.

В выпускаемых и проектируемых конструкциях реализуются различные технические решения — от традиционного двигателя внутреннего сгорания (двигатель Отто), до паровых турбин и поршневых двигателей, а также двигателя внешнего сгорания Стирлинга. Продвигая данное оборудование, производители приводят аргументы как экономического, так и экологического характера: высокий (более 90 %) совокупный КПДмикро-ТЭЦ обеспечивает снижение затрат на энергоснабжение и объем вредных выбросов, в частности углекислого газа, в атмосферу.

Компания Senertec GmbH, входящая в Вахi Group, реализовавшая к настоящему времени порядка полутора десятка тысяч установок Dachs (Барсук) с двигателем внутреннего сгорания.

Электрическая мощность — от 5 кВт, тепловая — от 12,5 до 20,5. Senertec предлагает энергоцентр для индивидуального дома, а при использовании нескольких модулей и крупного коммерческого объекта. Кроме компактного когенерационного модуля он включает в стандартном исполнении буферный накопитель емкостью до 1000 л со смонтированным на нем тепловым пунктом, объединяющим все элементы обвязки, необходимые для отопления и ГВС.

Дополнительно имеется также внешний конденсационный теплообменник. Различные модели установок Dachs работают на природном, сжиженном газе, дизельном топливе.

Имеется модель Dachs RS, созданная для работы на биодизельном топливе из рапсового масла. Ориентировочная стоимость газовой модели — 25 тыс. евро.

МикроТЭЦ (Mini-BHKW) ecopover немецкой компании PoverPlus Technologies (входит в Vaillant Group) уже продается на европейском рынке.

Её электрическая мощность модулируется в диапазоне от 1,3 до 4,7, тепловая — в диапазоне от 4,0 до 12,5 кВт. Суммарный КПД установки превышает 90 %, топливом для нее служит природный или сжиженный газ.

Ориентировочная стоимость модели — 20 тыс. евро.

В конце прошлого года компанией Otag Vertribes выпущена пилотная партия напольной газовой микроТЭЦ lion ®- Powerblock электрической мощностью 0.2-2,2, тепловой — 2,5-16,0 кВт.

В ней применен паровой двухцилиндровый двигатель со сдвоенным свободно движущимся поршнем: пар поочередно поступает то в левый, то в правый цилиндр, приводя в движение рабочий поршень.

Парогенератор аппарата состоит из наддувной горелки и стального змеевика; температура пара — 350 °С, давление — 25-30 бар. Его конденсация осуществляется непосредственно в аппарате.

Как ожидается, lion ® на пеллетах будет доступна апреля 2010 года.

Компания Microgen (Великобритания), один из лидеров в производстве мини-ТЭЦ , впервые разработала двигатель Стирлинга настолько маленького размера, что его можно встроить в котёл автономной системы отопления.

Компанией Вахi Heating UK было объявлено о намерении вывести в 2008 г. на рынок Великобритании компактную (в настенном исполнении) микроТЭЦ электрической мощностью 1, тепловой — до 36 кВт. Установка разрабатывалась совместно с компанией Microgen Energy и представляет собой сочетание созданного ею компактного однопоршневого двигателя Стирлинга с конденсационным котлом Вахi.

Модель оснащена двумя горелками: первая — наддувная модуляционная -обеспечивает работу электрогенератора и получение 15 кВт тепловой мощности, вторая -удовлетворяет дополнительную потребность объекта в тепле. Прототип установки был представлен на выставке ISН-2007.

Microgen, в сотрудничестве с голландской компанией-поставщиком природного газа Gausine и De Dietrich Remeha Group , производящим котлы Remeha , разрабатывает комплексное решение для отопления и производства электричества.

Группа De Dietrich-Remeha планирует производить и продавать настенный конденсационный котел со встроенным двигателем Стирлинга . Он уже экспонировался на выставках ISН-2007, 2009. Котел будет выпускаться в одно- и двух-контурном исполнениях. Некоторые технические характеристики котла: Его тепловая мощность составит 23 кВт , во втором случае — 28 кВт ; электрическая мощность — 1 кВт ; тепловая мощность Stirling – 4.8 кВт , КПД при 40/30°C – более 107%, низкие выбросы CO2 и NOx, уровень шума – менее 43 дб(A) на 1 м.

Габариты: 900x420x450 мм.

Самое главное преимущество котла HRE состоит в том, что часть его высокой производительности до 107% (благодаря технологии конденсации) используется для выработки электричества. Стоимость электричества, а также выбросы вредных веществ снижены на 65% по сравнению с тепловыми электростанциями на традиционном топливе.

Для среднего жилища котел “Remeha-HRE” производит 2500 – 3000 кВт в год, что составляет 75% от среднего потребления, тем самым экономится примерно 400 евро в год. При отоплении и производстве электроэнергии на 20 % сокращаются выбросы вредных веществ. В Голландии тестируются 8 котлов. В настоящий момент для более масштабного тестирования запускаются еще 120 котлов. Коммерческое производство предусмотрено начать в 2010 году.

В Японии более 30.000 домовладельцев установили микро-ТЭЦ Honda с тихими, эффективными двигателями внутреннего сгорания, размещенными в гладком металлическом корпусе.

Автоматизированные газогенераторные установки KOHLER® производства США мощностью 13 кВА, предназначенные для использования в жилых домах.

Они обладают оптимальной компактностью и отменной шумоизоляцией.

Газовые генераторы предназначены для наружной установки и не требуют особого помещения. Для их работы пригоден как природный магистральный газ, так и сжиженный газ в баллонах или газгольдерах.

Система противоаварийной автоматики делает их использование безопасным и комфортным.

Данное оборудование позволяет наиболее эффективно решать следующие, увы, нередкие проблемы с электроснабжением, встающие перед собственниками загородных домов:

  • Сеть хорошая, мощности хватает, но иногда случаются перебои электроснабжения
  • Сеть слабая, перегруженная, сильные «просадки» напряжения, частые отключения
  • Недостаточно выделенной электроснабжающей организацией мощности
  • Сети нет вообще

У Вас никогда не будет недостатка в энергии!

Вашему дому нужна энергия.

Генераторные установки KOHLER® сделаны с профессиональным качеством, но спроектированы для домашнего использования, чтобы Вы могли продолжать свои занятия и наслаждаться комфортом даже во время отключения электроэнергии. Генераторные установки KOHLER® компактны, обладают шумовой изоляцией и включаются автоматически, если произошло отключение электричества, обеспечивая продолжение нормальной жизни в доме и абсолютное душевное спокойствие.

Будьте уверены в Вашей генераторной установке KOHLER®.

Она начнет работу, если произойдет отключение электричества, неважно, дома Вы или нет, и обеспечит Ваш дом электроэнергией, например, для того, чтобы:

  • Продолжили работать холодильники и морозильные камеры.
  • Функционировали кондиционеры, системы отопления и сигнализации.
  • Функционировали дренажные насосы, морозозащитные системы и т.д.
  • Обеспечить энергией Вашу компьютерную систему.
  • Обыденная жизнь продолжалась без потерь.

Генераторные установки KOHLER® устанавливаются стационарно вне стен дома и включаются автоматически для выработки энергии, если энергоснабжение от сети прекращается.

  • Надежное электроснабжение.

    Сбои в электроснабжении могут привести к поломке электрического оборудования (плазменные дисплеи, холодильники с электронным управлением температурой, компьютеры и т.д.).

    Гидроэлектростанции в России

    Генераторные установки KOHLER® обеспечивают резервной электроэнергией, которая соответствует европейским стандартам для жилых помещений. Генераторная установка KOHLER® не испортит дорогостоящее электронное оборудование!

  • Лучшая звуковая изоляция. Генераторные установки KOHLER® работают практически бесшумно, сохраняя комфортные условия для Вас и Ваших соседей. Уровень шума при работе не выше 65 децибел на расстоянии 7 м, что соответствует шуму обычного бытового кондиционера.
  • Быстрый запуск.

    Генераторные установки KOHLER® за несколько секунд восстанавливают электроснабжение. Они обладают автоматической системой еженедельного тестирования для поддержания установки в рабочем состоянии при редком использовании.

  • Топливо. Генераторные установки KOHLER® пригодны для работы на жидком газе пропан или природном газе, а также на дизельном топливе.

    Газовые генераторные установки имеют низкий уровень эмиссии, что делает их более безопасными с экологической точки зрения, работают бесшумно и требует менее частого технического обслуживания.

    Выбор за Вами.

  • Качество KOHLER®. KOHLER® является признанной международной группой компаний с почти 90-летним опытом производства генераторных установок для обеспечения резервной энергией. Первая установка была собрана в 1920 году.

Характеристики газогенератора SDMO RES 13

Электростанции и генераторы

На главную

Малые гидроэлектростанции обычно делятся на два типа: «мини» — обеспечивают единицу мощности до 5000 кВт, а «микро» — в диапазоне от 3 до 100 кВт. Использование гидроэлектростанций таких мощностей для России не ново, но хорошо забытое старое: в 50-е и 60-е годы действовали тысячи малых гидроэлектростанций.

В настоящее время их количество почти не достигает сотен штук. Между тем, постоянный рост цен на органическое топливо приводит к значительному увеличению стоимости электроэнергии, доля которой в производственных издержках составляет 20% и более. В связи с этим небольшая гидроэлектростанция получила новую жизнь.

Современная гидроэнергетика по сравнению с другими традиционными видами электроэнергии является наиболее эффективным и экологически безопасным способом производства электроэнергии.

Малая гидроэлектростанция продолжается в этом направлении. Малые электростанции позволяют сохранять природный ландшафт, окружающую среду не только во время фазы эксплуатации, но и в процессе строительства.

Мини-гидроэлектростанция 10-15-30-50 кВт

В будущем отрицательное влияние на качество воды не оказывает: полностью сохраняет первоначальные природные свойства.

В реках рыбных консервов вода может использоваться для водных видов растений. В отличие от других экологически чистых возобновляемых источников энергии, таких как солнце, ветер, небольшие гидроэлектростанции практически не зависят от погодных условий и могут обеспечить стабильное снабжение экономичных потребителей электроэнергией. Еще одним преимуществом небольшой энергии является экономия.

В то время, когда природные источники энергии — нефть, уголь и газ — истощаются, постоянный прирост дороже, использование дешевых, доступных возобновляемых источников энергии, особенно малых, позволяет производить дешевую электроэнергию. Кроме того, строительство объектов малых ГЭС дешево и быстро окупается.Так, строительство небольшой ГЭС с установленной мощностью около 500 кВт, стоимость строительных работ составляет около 14,5-15,0 млн рублей.

В комбинированном столе вводятся в эксплуатацию проектная документация, строительство оборудования, строительство и монтаж малых ГЭС на 15-18 месяцев. Высокая частота электроэнергии от ГЭС составляет не более 0,45-0,5 рубля за 1 кВтч, в 1, Это в пять раз ниже, чем затраты на электроэнергию, фактически проданные энергосистемой.

Кстати, в следующем году или двух годах электроэнергетические системы намерены увеличить в 2-2,2 раза, поэтому затраты на строительство будут погашены через 3,5-5 лет. Реализация такого проекта с точки зрения окружающей среды не повредит окружающей среде.

Кроме того, следует отметить, что реконструкция, ранее вычитаемая из эксплуатации небольшой гидроэлектростанции, обойдется в 1,5-2 раза дешевле.

Многие российские научные и производственные организации и компании занимаются проектированием и разработкой оборудования для таких ГЭС.

Одним из крупнейших является межотраслевое научно-техническое объединение «ИНСЕТ» (Санкт-Петербург). Специалисты INSET разработали и запатентовали оригинальные технические решения для автоматизированных систем управления для малых и микро-ГЭС. Использование таких систем не требует постоянного присутствия обслуживающего персонала на объекте — гидравлический блок надежно работает в автоматическом режиме. Система управления может быть реализована на основе программируемого контроллера, который позволяет визуально контролировать параметры гидравлического блока на экране компьютера.

Гидравлические установки для малых и микрогидроэлектростанций производят MNTO «встроенный», предназначенный для работы в широком диапазоне потоков и давлений с высокими энергетическими свойствами и изготовленных с помощью пропеллерной, радиальной и осевой лопастей турбины.

Объем поставки включает, как правило, турбину, генератор и автоматическое управление гидравлическим блоком. Скорости потока всех турбин основаны на методе математического моделирования.

Малая энергия является наиболее эффективным решением энергетических проблем для районов, относящихся к районам децентрализованного электроснабжения, что составляет более 70% территории России. Обеспечение энергии для отдаленных регионов и нехватка энергии требуют значительных затрат.

И здесь далеко не полезно использовать возможности существующей федеральной энергетической системы. Экономический потенциал в России значительно выше, чем потенциал возобновляемых источников энергии, таких как ветер, солнечная энергия и биомасса, вместе взятые.В национальной энергетической программе развивается компания «ИНСЕТ» «Концепция развития и объектов схема размещения малых гидроэлектростанций на территории Республики Тыва », согласно которой в этом году будет введена в эксплуатацию небольшая гидроэлектростанция в селе Кызыл-Хая.

В настоящее время гидроэлектростанции INSET работают в России (Кабардино-Балкария, Башкортостан), Содружестве Независимых Государств (Беларусь, Грузия), а также в Латвии и других странах.

Экологически чистая и экономичная мини-энергия давно привлекает внимание иностранцев.

Micro INESET работает в Японии, Южной Корее, Бразилии, Гватемале, Швеции, Польше.

Бесплатное электричество - мини ГЭС своими руками

Если у Вашего жилища протекает река или даже небольшой ручей, то с помощью самодельной мини ГЭС Вы можете получить бесплатную электроэнергию. Возможно это будет не очень большое пополнение бюджета, но осознание того, что у Вас есть своя собственная электроэнергия - стоит гораздо дороже.

Ну а если, например на даче, нет центрального электроснабжения - то даже небольшие мощности электроэнергии будут просто необходимы. И так, для создания самодельной гидроэлектростанции необходимо как минимум два условия - наличие водяного ресурса и желание.

Если и то и другое присутствует, то то первое, что нужно сделать – это измерить скорость потока реки.

Сделать это очень просто - бросаете в реку веточку и замерьте время, в течении которого она проплывет 10 метров. Поделив метры на секунды, вы получите скорость течения в м/с. Если скорость меньше 1 м/с, то продуктивной мини ГЭС не получится.

В этом случае можно попробовать увеличить скорость потока искусственно заузив русло или сделав небольшую плотину, если имеете дело с не большим ручьем.

Для ориентира, можно использовать соотношение между скоростью потока в м/с и мощностью снимаемой электроэнергии с вала винта в кВт (диаметр винта 1 метр).

Данные экспериментальные, в реальности полученная мощность зависит от многих факторов, но для оценки подойдет. Так:

  • 0.5 м/с – 0.03 кВт,
  • 0.7 м/с – 0.07 кВт,
  • 1 м/с – 0.14 кВт,
  • 1.5 м/с – 0.31 кВт,
  • 2 м/с – 0.55 кВт,
  • 2.5 м/с – 0.86 кВт,
  • 3 м/с -1.24 кВт,
  • 4 м/с – 2.2 кВт и т.д.

Мощность самодельной мини ГЭС пропорциональна кубу скорости потока.

Как уже указывалось, если скорость течения недостаточная, попробуйте ее искусственно увеличить, если это конечно возможно.

Типы мини-ГЭС

Существует несколько основных вариантов самодельных мини гидроэлектростанций.


Это колесо с лопастями, установленное перпендикулярно поверхности воды.

Колесо погружено в поток меньше чем наполовину. Вода давит на лопасти и вращает колесо. Существуют также колеса-турбины со специальными лопатками, оптимизированными под струю жидкости. Но это достаточно сложные конструкции скорее заводского, чем самодельного изготовления.


Это ротор с вертикальной осью вращения, используемый для генерации электрической энергии.

Вертикальный ротор, который вращается за счет разности давлений на его лопастях. Разница давлений создается за счет обтекания жидкостью сложных поверхностей. Эффект подобен подъемной силе судов на подводных крыльях или подъемной силе крыла самолета. Эта конструкция была запатентована Жорж Жан-Мари Дарье, французским авиационным инженером в 1931 году. Также часто используется в конструкциях ветрогенераторов.

Гирляндная гидроэлектростанция состоит из легких турбин - гидровингроторов, нанизанных и жестко закрепленными в виде гирлянды на тросе, переброшенном через реку.

Один конец троса закрепляется в опорном подшипнике, второй - вращает ротор генератора.

Мини-ГЭС - гидроэнергоблок Ленева

Трос в этом случае играет роль своеобразного вала, вращательное движение которого передается к генератору. Поток воды вращает роторы, роторы вращают трос.


Также заимствован из конструкций ветровых электростанций, такой себе «подводный ветряк» с вертикальным ротором. В отличие от воздушного, подводный пропеллер имеет лопасти минимальной ширины. Для воды достаточно ширины лопасти всего в 2 см. При такой ширине будет минимальное сопротивление и максимальная скорость вращения.

Такая ширина лопастей выбиралась для скорости потока 0.8-2 метра в секунду. При больших скоростях, возможно, оптимальны другие размеры. Пропеллер движется не за счет давления воды, а за счет возникновения подъемной силы. Так же как крыло самолета. Лопасти пропеллера движутся поперек потока, а не увлекаются потоком в направлении течения.

Преимущества и недостатки различных систем самодельной мини ГЭС

Недостатки гирляндной ГЭС очевидны: большая материалоемкость, опасность для окружающих (длинный подводный трос, скрытые в воде роторы, перегораживание реки), низкий КПД.

Гирляндная ГЭС – это своего рода небольшая плотина. Целесообразно использовать в безлюдных, удаленных местах с соответствующими предупредительными знаками.

Возможно потребуется разрешение властей и экологов. Второй вариант - небольшой ручей у Вас в огороде.

Ротор Дарье - сложен в расчете и изготовлении.

В начале работы его нужно раскрутить. Но он привлекателен тем, что ось ротора расположена вертикально и отбор мощности можно производить над водой, без дополнительных передач. Такой ротор будет вращаться при любом изменении направления потока - это плюс.

Наибольшее распространение при построении самодельных гидроэлектростанций получили схемы пропеллера и водяного колеса.

Так как эти варианты сравнительно просты в изготовлении, требуют минимальных расчетов и реализуются при минимальных затратах, имеют высокий КПД, просты в настройке и эксплуатации.

Пример простейшей мини-ГЭС

Простейшую гидроэлектростанцию можно быстро соорудить из обычного велосипеда с динамкой для велофары.

Из оцинкованного железа или не толстого листового алюминия надо заготовить несколько лопастей (2-3). Лопасти должны быть длиной от обода колеса до втулки, а шириной 2-4 см.

Эти лопасти устанавливаются между спицами любым подручным способом или заранее заготовленными креплениями.

Если вы используете две лопасти, то установите их напротив друг друга.

Если захотите добавить большее количество лопастей, то разделите окружность колеса на число лопастей и установите их через равные промежутки. С глубиной погружения колеса с лопастями в воду можете поэкспериментировать. Обычно его погружают от одной трети до половины.

Вариант походной ветроэлектростанции рассматривался ранее.

Такая микро ГЭС не занимает много места и отлично послужит велотуристам - главное наличие ручья или речушки - что обычно и есть в месте разбивки лагеря.

Мини ГЭС из велосипеда сможет освещать палатку и заряжать сотовые телефоны или другие гаджеты.

Источник

самодельныйсвободнопоточная

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ВВЕДЕНИЕ

Человек еще в глубокой древности обратил внимание на реки как на доступный источник энергии. Для использования этой энергии люди научились строить водяные колеса, которые вращала вода; этими колесами приводились в движение мельничные постава и другие установки. Водяная мельница является ярким примером древнейшей гидроэнергетической установки, сохранившейся во многих странах до нашего времени почти в первозданном виде. До изобретения паровой машины водная энергия была основной двигательной силой на производстве. По мере совершенствования водяных колес увеличивалась мощность гидравлических установок, приводящих в движение станки и т.д. В 1-й половине XIX века была изобретена гидротурбина, открывшая новые возможности по использованию гидроэнергоресурсов. С изобретением электрической машины и способа передачи электроэнергии на значительные расстояния началось освоение водной энергии путем преобразования ее в электрическую энергию на гидроэлектростанциях (ГЭС)

Малые и микроГЭС - объекты малой гидроэнергетики. Эта часть энергопроизводства занимается использованием энергии водных ресурсов и гидравлических систем с помощью гидроэнергетических установок малой мощности (от 1 до 3000 кВт). Малая энергетика получила развитие в мире в последние десятилетия, в основном из-за стремления избежать экологического ущерба, наносимого водохранилищами крупных ГЭС, из-за возможности обеспечить энергоснабжение в труднодоступных и изолированных районах, а также, из-за небольших капитальных затрат при строительстве станций и быстрого возврата вложенных средств (в пределах 5 лет). Строительство МГЭС имеет также широкие перспективы развития в различных регионах мира с трансграничными речными бассейнами.

В настоящее время нет общепринятого для всех стран понятия малой гидроэлектростанции. Однако во многих странах в качестве основной характеристики такой ГЭС принята ее установленная мощность. К малым, как правило, относятся ГЭС мощностью до 10 МВт (в некоторых странах до 50 МВт).

Малая гидроэнергетика свободна от многих недостатков крупных ГЭС и признана одним из наиболее экономичных и экологически безопасных способов получения электроэнергии, особенно при использовании небольших водотоков. В малых, микро- или нано-ГЭС сочетаются преимущества большой ГЭС с одной стороны и возможность децентрализованной подачи энергии с другой стороны. Они не имеют многих недостатков, характерных для больших ГЭС, а именно: дорогостоящие трансмиссии, проблемы, связанные с негативным воздействием на окружающую среду.

1. ПЕРСПЕКТИВЫ ИСПОЛЬЗОВАНИЯ МАЛОЙ ГИДРОЭНЕРГЕТИКИ

Малая гидроэнергетика за последние десятилетия заняла устойчивое положение во многих странах мира. Например, в 2005 году суммарная мощность малых ГЭС в мире выросла на 8% (5 ГВт) и достигла 66 ГВт, причем она составила 36% от суммарной мощности всех возобновляемых источников энергии (исключая большую гидроэнергетику) и 1.6% от общих электроэнергетических мощностей. Таким образом, можно сказать, что МГЭС являются одним из основных источников получения электроэнергии среди возобновляемых ресурсов.

Развивающиеся страны строят малые ГЭС в качестве автономных источников электроэнергии в сельской местности.

В Швейцарии доля производства электроэнергии на МГЭС достигла 8,3%, в Испании - 2,8%, в Швеции - почти 3%, а в Австрии - 10%. Лидирующие позиции по совокупным генерирующим мощностям МГЭС занимают: Китай (47 ГВт), Япония (4 ГВт), США (3,4 ГВт), Италия и Бразилия.

По данным ESHA (European Small Hydropower Association), в 2011 году суммарная установленная мощность МГЭС в мире составила 87 ГВт.

Суммарные мощности МГЕС:

Таким образом, можно сказать, что малая гидроэнергетика будет оставаться одним из самых важных и конкурентоспособных возобновляемых источников энергии. Латинская Америка, Северная Америка и Европа имеют значительный гидроэнергетический потенциал, большая часть которого уже использована. В Восточной, Южной Азии и Африке малая гидроэнергетика еще недостаточно развита, что говорит о большом потенциале ее использования в этих странах.

1.2 В РОССИИ

возобновляемый источник гидроэнергетика малый

В России зоны децентрализованного энергоснабжения составляют более 70% территории страны. До сих пор тут можно встретить населенные пункты, в которых электричества не было никогда. Причем не всегда это поселения Крайнего Севера или Сибири. Электрификация не затронула, например, некоторые уральские поселки - края, который вряд ли назовешь неблагополучным с точки зрения энергетики. Между тем, электрификация отдаленных и труднодоступных населенных селений - дело не такое уж и сложное. Так, в любом уголке России найдется речка или ручей, где можно установить микроГЭС.

Технико-экономический потенциал малой гидроэнергетики в России превышает потенциал таких возобновляемых источников энергии, как ветер, солнце и биомасса, вместе взятых. В настоящее время он определен в размере 60 млрд. кВт-ч в год. Но используется этот потенциал крайне слабо: всего на 1%. Не так давно, в 1950-60-х годах, у нас действовало несколько тысяч МГЭС. Сейчас - всего лишь несколько сотен - сказались результаты перекосов в ценовой политике и недостаточное внимание к совершенствованию конструкций оборудования, к применению более совершенных материалов и технологий.

В России малая гидроэнергетика представлена бесплотинными гидроэлектростанциями (ГЭС), мощность которых не превышает 30 МВт, а мощность единичного гидроагрегата составляет менее 10 МВт.

В настоящее время по всей России количество действующих МГЭС оценивается от нескольких десятков (60-70 единиц) до нескольких сотен (200-300 единиц).

1.3 В УКРАИНЕ

То, что после Второй мировой войны энергоснабжение Украины осуществлялось в основном за счет малой гидроэлектроэнергетики, помнят разве что историки и специалисты отрасли. Всего на начало 1960-х насчитывалось около 956 малых ГЭС общей мощностью 30 тыс. кВт. Для сравнения: в 1948 году в республике действовали 3 тыс. малых гидроустановок. Однако вследствие развития централизованного электроснабжения и концентрации производства электроэнергии на мощных тепло- и гидростанциях строительство малых ГЭС было остановлено. Началась их консервация, демонтаж, сотни мини-гидроэлектростанций были разрушены, а оборудование разворовано.

К концу 1980-х удалось сохранить всего 49 станций, и до 1995 года малой гидроэнергетикой в Украине практически никто не занимался. Только в 1996 году появились первые энтузиасты, проявившие к ней интерес. Несколько лет назад и на государственном уровне было принято решение пересмотреть энергополитику и заняться возрождением малых ГЭС. Согласно данным ассоциации «Укргидроэнерго», в Украине сегодня работают 81 малая гидроэлектростанция и семь микроустановок общей мощностью 111,75 МВт, что составляет всего около 5% технически возможного потенциала страны.

Из действующих в настоящее время МГЭС государственных - 25, при этом пять из них находятся на балансе Госводхоза и 20 принадлежат соответствующим облэнерго («Винницаоблэнерго» - пять, «Закарпатье облэнерго» - три, «Киевэнерго» - две, «Кировоградоблэнерго» - четыре и т. д.). В случае приватизации облэнерго в частные руки переходят и ГЭС. Кроме этого, многие малые станции находились в коллективной собственности, поскольку были построены колхозами. Именно их сегодня почти полностью выкупили частные собственники. Частными являются и уже восстановленные станции (к примеру, Яблунецкая МГЭС была выкуплена ассоциацией «Новосвит» еще в 2002 году).

Эксплуатация минигидроэлектростанций в Украине дает возможность производить около 250 млн кВт·год электроэнергии на год, что эквивалентно ежегодной экономии до 75 тыс. тонн органического топлива.

2. ПЛЮСЫ И МИНУСЫ МГЭС

Одним из основных достоинств объектов малой гидроэнергетики является экологическая безопасность. В процессе их сооружения и последующей эксплуатации вредных воздействий на свойства и качество воды нет. Водоемы можно использовать и для рыбохозяйственной деятельности, и как источники водоснабжения населения. Однако и помимо этого у микро и малых ГЭС немало достоинств. Современные станции просты в конструкции и полностью автоматизированы, т.е. не требуют присутствия человека при эксплуатации. Вырабатываемый ими электрический ток соответствует требованиям ГОСТа по частоте и напряжению, причем станции могут работать как в автономном режиме, т.е. вне электросети энергосистемы края или области, так и в составе этой электросети. А полный ресурс работы станции - не менее 40 лет (не менее 5 лет до капитального ремонта). Ну а главное - объекты малой энергетики не требуют организации больших водохранилищ с соответствующим затоплением территории и колоссальным материальным ущербом.

При строительстве и эксплуатации МГЭС сохраняется природный ландшафт, практически отсутствует нагрузка на экосистему. К преимуществам малой гидроэнергетики - по сравнению с электростанциями на ископаемом топливе - можно также отнести: низкую себестоимость электроэнергии и эксплуатационные затраты, относительно недорогую замену оборудования, более длительный срок службы ГЭС (40-50 лет), комплексное использование водных ресурсов (электроэнергетика, водоснабжение, мелиорация, охрана вод, рыбное хозяйство).

Многие из малых ГЭС не всегда обеспечивают гарантированную выработку энергии, являясь сезонными электростанциями. Зимой их энергоотдача резко падает, снежный покров и ледовые явления (лед и шуга) так же, как и летнее маловодье и пересыхание рек могут вообще приостановить их работу. Сезонность малых ГЭС требует дублирующих источников энергии, большое их количество может привести к потере надежности энергоснабжения. Поэтому во многих районах мощность малых ГЭС рассматривается не в качестве основной, а в качестве дублирующей.

У водохранилищ малых ГЭС, особенно горных и предгорных районов, очень остро стоит проблема их заиления и связанная с этим проблема подъема уровня воды, затоплений и подтоплений, снижения гидроэнергетического потенциала рек и выработки электроэнергии. Известно, например, что водохранилище Земонечальской ГЭС на реке Куре было заилено на 60% в течение 5 лет.

Для рыбного хозяйства плотины малых ГЭС менее опасны, чем средних и крупных, перекрывающих миграционные пути проходных и полупроходных рыб и перекрывающих нерестилища. Хотя в целом создание гидроузлов не устраняет полностью урон рыбному стаду на основных реках, т.к. речной бассейн - это единая экологическая система и нарушения ее отдельных звеньев неизбежно отражаются на системе в целом.

ЗАКЛЮЧЕНИЕ

Из всего вышеизложенного следует, что малая гидроэнергетика занимает устойчивое положение как в мире, так и в Украине.

Строительство и реконструкция малых ГЭС позволит не только получить экологически чистую электроэнергию, но и обеспечить электричеством энергодефицитные районы, где отсутствуют мощные источники тока. Развитие малой гидроэнергетики способствует децентрализации общей энергетической системы, что позволяет стабильно обеспечивать труднодоступные села электричеством. Энергия, выработанная малыми ГЭС, используется ближайшими потребителями, соответственно, снижаются траты на ее транспортировку, и повышается надежность энергообеспечения. Кроме того, ГЭС могут выполнять и другие задачи, к примеру, защищать прилегающие территории от сезонных паводков.

С учетом ограниченности гидроресурсов в мире можно предположить, что в период до 2030 года темпы развития гидроэнергетики заметно снизятся, но при этом будет поддерживаться диверсификация малой гидроэнергетики. При темпе роста в 4.5-4.7% производство электроэнергии на малых ГЭС достигнет к 2030 году 770-780 ТВт.ч, что будет составлять более 2% всего производства электроэнергии в мире. Таким образом, можно сказать, что малая гидроэнергетика в обозримой перспективе останется одним из самых важных и конкурентоспособных возобновляемых источников энергии.

ЛИТЕРАТУРА

1. Березовский Н.И. и др. Технология энергосбережения

2. Волков С.Г., Гидроэнергетика, СПб, 1997г.

3. Источники энергии. Факты, проблемы, решения, М., Наука и техника, 1997г.

4. Михайлов Л.П. Малая гидроэнергетика

5. Мунц В.А. Энергосбережение в энергетике и теплотехнологиях

6. Непорожний П.С., Попков В.И., Энергетические ресурсы мира, М., Энергоатомиздат, 1995г.

7. Самойлов М.В. Основы энергоргосбережения

Размещено на Allbest.ru

Подобные документы

    Немного об истории. Гидроэнергетика в Беларуси. Основные схемы использования водной энергии. Описание работы ГЭС. Влияние гидроэнергетических объектов на окружающую среду и охрана природы.

    реферат , добавлен 01.06.2007

    Классификация альтернативных источников энергии. Возможности использования альтернативных источников энергии в России. Энергия ветра (ветровая энергетика). Малая гидроэнергетика, солнечная энергия. Использование энергии биомассы в энергетических целях.

    курсовая работа , добавлен 30.07.2012

    Доля альтернативных источников энергии в структуре потребления РФ. Производство биогаза из органических отходов. Технический потенциал малой гидроэнергетики. Использование низкопотенциальных геотермальных источников тепла в сочетании с теплонасосами.

    курсовая работа , добавлен 20.08.2014

    Изучение альтернативной гидроэнергетики, ее истории и использование в современный период. Исследование энергии волн, морских приливов и отливов. Создание геликоидных турбин. Особенности применения гидроэнергетики в различных областях науки и техники.

    реферат , добавлен 14.11.2014

    Виды нетрадиционных возобновляемых источников энергии, технологии их освоения. Возобновляемые источники энергии в России до 2010 г. Роль нетрадиционных и возобновляемых источников энергии в реформировании электроэнергетического комплекса Свердловской обл.

    реферат , добавлен 27.02.2010

    Использование возобновляемых источников энергии, их потенциал, виды. Применение геотермальных ресурсов; создание солнечных батарей; биотопливо. Энергия Мирового океана: волны, приливы и отливы. Экономическая эффективность использования энергии ветра.

    реферат , добавлен 18.10.2013

    Анализ энергосбережения (экономии энергии) как правовых, производственных, технических и экономических мер, направленных на эффективное использование топливно-энергетических ресурсов и на внедрение в хозяйственный оборот возобновляемых источников энергии.

    реферат , добавлен 24.10.2011

    Этапы развития гидроэнергетики Украины. Важность решений проблемы покрытия пиковых мощностей специальными способами. Анализ эффективности малой гидроэнергетики. Значение работы гидроакумулирующих станций, перспективы их применения. Принцип работы плотин.

    реферат , добавлен 13.06.2009

    Изучение опыта использования возобновляемых источников энергии в разных странах. Анализ перспектив их массового использования в РФ. Основные преимущества возобновляемых альтернативных энергоносителей. Технические характеристики основных типов генераторов.

    реферат , добавлен 07.05.2009

    Изучение истории рождения энергетики. Использование электрической энергии в промышленности, на транспорте, в быту, в сельском хозяйстве. Основные единицы ее измерения выработки и потребления. Применение нетрадиционных возобновляемых источников энергии.

Микро - и малые ГЭС российского производства


В данном разделе приведены основные технические характеристики серийно выпускаемых в России напорных микро-и малых ГЭС, а также бесплотинных ГЭС, использующих скоростные характеристики набегающего водяного потока.

Малые ГЭС: хорошо забытое старое

Одним из наиболее эффективных направлений развития нетрадиционной энергетики является использование энергии небольших водотоков с помощью микро - и малых ГЭС. Это объясняется, с одной стороны, значительным потенциалом таких водотоков при сравнительной простоте их использования, а с другой – практическим исчерпанием гидроэнергетического потенциала крупных рек в этом регионе.

Объекты малой гидроэнергетики условно делят на два типа: “мини” - обеспечивающие единичную мощность до 5000 кВт, и “микро” - работающие в диапазоне от 3 до 100 кВт. Использование гидроэлектростанций таких мощностей - для России вовсе не новое, а хорошо забытое старое: в 50-60-х годах у нас работало несколько тысяч малых ГЭС. Сегодня их количество едва достигает нескольких сотен штук. Между тем, постоянный рост цен на органическое топливо приводит к значительному удорожанию электрической энергии, доля которой в себестоимости производимой продукции достигает 20 и более процентов. На этом фоне малая гидроэнергетика обретает новую жизнь.

Преимущества малой гидроэнергетики

Современная гидроэнергетика по сравнению с другими традиционными видами электроэнергетики является наиболее экономичным и экологически безопасным способом получения электроэнергии. Малая гидроэнергетика идет в этом направлении еще дальше. Небольшие электростанции позволяют сохранять природный ландшафт, окружающую среду не только на этапе эксплуатации, но и в процессе строительства. При последующей эксплуатации отсутствует отрицательное влияние на качество воды: она полностью сохраняет первоначальные природные свойства. В реках сохраняется рыба, вода может использоваться для водоснабжения населения.

В отличие от других экологически безопасных возобновляемых источников электроэнергии - таких, как солнце, ветер, - малая гидроэнергетика практически не зависит от погодных условий и способна обеспечить устойчивую подачу дешевой электроэнергии потребителю.

Еще одно преимущество малой энергетики - экономичность. В условиях, когда природные источники энергии - нефть, уголь, газ - истощаются, постоянно дорожают, использование дешевой, доступной, возобновляемой энергии рек, особенно малых, позволяет вырабатывать дешевую электроэнергию. К тому же сооружение объектов малой гидроэнергетики низкозатратно и быстро окупается.

Так, при строительстве малой ГЭС установленной мощностью около 500 кВт стоимость строительно-монтажных работ составляет порядка 14,5-15,0 млн рублей. При совмещенном графике разработки проектной документации, изготовления оборудования, строительства и монтажа малая ГЭС вводится в эксплуатацию за 15-18 месяцев.

Себестоимость электроэнергии, вырабатываемой на подобной ГЭС, составляет не более 0,45-0,5 рублей за 1 кВтч, что в 1,5 раза ниже, чем стоимость электроэнергии, фактически реализуемой энергосистемой. Кстати, в ближайшие один-два года энергосистемы планируют ее увеличить в 2-2,2 раза.

Таким образом, затраты на строительство окупятся за 3,5-5 лет. Реализация такого проекта с точки зрения экологии не нанесет ущерба окружающей среде.

Необходимо отметить, кроме этого, что реконструкция выведенной ранее из эксплуатации малой ГЭС обойдется в 1,5- 2 раза дешевле.

Оборудование для малых ГЭС

Проектированием и разработкой оборудования для таких ГЭС занимаются многие российские научно-производственные организации и фирмы. Одна из крупнейших - межотраслевое научно-техническое объединение “ИНСЭТ” (Санкт-Петербург). Специалистами “ИНСЭТ” разработаны и защищены патентами оригинальные технические решения систем автоматического управления малыми и микроГЭС. Использование таких систем не требует постоянного присутствия на объекте обслуживающего персонала - гидроагрегат надежно работает в автоматическом режиме. Система управления может быть выполнена на базе программируемого контроллера, который позволяет визуально контролировать параметры гидроагрегата на экране компьютера.

Гидроагрегаты для малых и микроГЭС, выпускаемые МНТО “ИНСЭТ”, предназначены для эксплуатации в широком диапазоне напоров и расходов с высокими энергетическими характеристиками и выпускаются с пропеллерными, радиально-осевыми и ковшовыми турбинами. В комплект поставки входят, как правило, турбина, генератор и система автоматического управления гидроагрегатом. Проточные части всех турбин разработаны с использованием метода математического моделирования.

География применения

Малая энергетика - это на сегодняшний день наиболее экономичное решение энергетических проблем для территорий, относящихся к зонам децентрализованного электроснабжения, которые составляют более 70% территории России. Обеспечение энергией удаленных и энергодефицитных регионов требует значительных затрат. И здесь далеко не всегда выгодно использовать мощности существующей федеральной энергосистемы. Гораздо экономичнее развивать мощности малой энергетики, экономический потенциал которой в России превышает потенциал таких возобновляемых источников энергии, как ветер, солнце и биомасса, вместе взятых.

Технология

Гидроагрегаты для малых ГЭС предназначены для эксплуатации в широком диапазоне напоров и расходов с высокими энергетическими характеристиками. Наиболее ответственные узлы под контролем наших специалистов серийно изготавливаются на конверсионных оборонных заводах Санкт-Петербурга с использованием новейших технологий, что позволяет обеспечить их высокое качество. В комплект поставки входят: турбина, генератор и система автоматического управления.

МикроГЭС “ИНСЭТ” - надежные, экологически чистые, компактные, быстроокупаемые источники электроэнергии для деревень, хуторов, дачных поселков, фермерских хозяйств, а также мельниц, хлебопекарен, небольших производств в отдаленных, горных и труднодоступных районах, где нет поблизости линий электропередач, а строить такие линии сейчас и дольше, и дороже, чем приобрести и установить МикроГЭС.

В комплект поставки входят: энергоблок (турбина-3, генератор-5), водозаборное устройство (2), выпускной коллектор (4) и устройство автоматического регулирования (6).

Схема установки микроГЭС

Имеется успешный опыт эксплуатации оборудования на перепадах уже существующих плотин, каналов, систем водоснабжения и водоотведения промышленных предприятий и объектов городского хозяйства, очистных сооружений, оросительных систем и питьевых водоводов.

Основные технические решения, использованные при создании оборудования, выполнены на уровне изобретений и защищены патентами.

Оборудование изготавливается серийно, отличается высокими технико-эксплуатационными показателями и доступными ценами.

Оборудование

1. МИКРОГИДРОЭЛЕКТРОСТАНЦИИ
с пропеллерным рабочим колесом
- мощностью до 10 кВт (МГЭС-10Пр) на напор 2,0- 4,5 м и расход 0,07 - 0,14 м3/ с;
- мощностью до 10 кВт (МГЭС-10Пр) на напор 4,0-10,0 м и расход 0,10 - 0,21 м3/ с;
- мощностью до 50 кВт (МГЭС- 50Пр) на напор 2,0-10,0 м и расход 0,36 - 0,80 м3/ с;
с диагональным рабочим колесом
- мощностью 20 кВт (МГЭС- 20ПрД) на напор 8-18 м и расход 0,08 - 0,17 м3/ с;
с ковшовым рабочим колесом
- мощностью до 100 кВт (МГЭС-100К) на напор 40-250 м и расход 0,015 - 0,046 м3/ с;
- мощностью до 200 кВт (МГЭС-200К) на напор 40-250 м и расход 0,015 - 0,013 м3/ с;

2. ГИДРОАГРЕГАТЫ ДЛЯ МАЛЫХ ГЭС
- гидроагрегаты с осевыми турбинами (ГА-1, ГА-8, ГА13) мощностью до 1800 кВт;
- гидроагрегаты с радиально-осевыми турбинами (ГА-2, ГА-4, ГА-9, ГА-11,) мощностью
до 5500 кВт;
- гидроагрегаты с ковшовыми турбинами (ГА-5, ГА-10) мощностью до 3300 кВт.

В последние годы в России растет интерес к строительству малых гидроэлектростанций. Они свободны от ряда недостатков крупных ГЭС и являются одним из наиболее экономичных и экологически безопасных источников получения электроэнергии.

Общепринятого определения того, что же такое малая ГЭС, сегодня в мире не существует. Чаще всего «мерилом» выступает ее установленная мощность. В большинстве стран эта планка ограничена 10МВт, но, например, в Китае к МГЭС относят все гидроэлектростанции мощностью до 50 МВт. Именно Китай уже не первый год прочно застолбил за собой звание мирового лидера по совокупной мощности МГЭС - более 50 ГВт. Для сравнения: идущая на втором месте Япония отстает от Поднебесной более чем в 10 раз. Что касается важности МГЭС для энергетического баланса страны, то тут вне конкуренции Швейцария и Австрия. В этих странах на долю МГЭС приходится 8,3% и 10% всей вырабатываемой энергии.

В настоящее время в России насчитывается примерно 300 МГЭС общей мощностью около 1,3 млн кВт. При этом программа развития малой гидроэнергетики предполагает создание до 2020 года на территории России 275 МГЭС общей мощностью 1,86 ГВт.

Альтернатива для глубинки. «Несмотря на высокие темпы развития «большой» гидроэнергетики, природные и инфраструктурные особенности России накладывают на этот процесс определенные рамки, - отмечает доцент Московского энергетического института Игорь Беспалов. - Например, основная часть гидроэнергетического потенциала нашей страны сконцентрирована в регионах Сибири и Дальнего Востока, достаточно далеко от основных потребителей электроэнергии». Как отмечает эксперт, в этом случае выработка электроэнергии традиционным способом из-за огромных транспортных расходов получается настолько нерентабельной, что экономически целесообразно становится использовать потенциал малых рек и других возобновляемых источников энергии.

Для промышленных предприятий, научных станций и нефтяных платформ, расположенных в отдаленной местности, зачастую именно МГЭС служат одним из немногих возможных способов генерирования электроэнергии. Еще одной перспективной сферой использования МГЭС становится децентрализованное снабжение электроэнергией сельских районов.

В сравнении с «большой» энергетикой инвестиционные проекты малых ГЭС обладают рядом важных преимуществ, в том числе коротким сроком подготовки и осуществления строительства, отсутствием необходимости держать на станциях персонал. Большинство МГЭС могут работать в полностью автоматическом режиме. Кроме того, по сравнению с более крупными гидроэлектростанциями МГЭС не нуждаются в зоне затопления, а значит, сразу отпадает целый ворох сложных экологических и социальных проблем.

К преимуществам малой гидроэнергетики можно отнести низкую себестоимость электроэнергии и эксплуатационные затраты, относительно недорогую замену оборудования и более длительный срок службы ГЭС.

Надежда на государство

«Перспективы развития малой энергетики в РФ сильно зависят от наличия полноценной системы господдержки этого сектора, - обращает внимание специалист «РусГидро» Александра Горшкова. - Без базовых «правил игры», установленных государством, переход к масштабной реализации проектов ВИЭ невозможен, так как проекты эти в основном экономически неэффективны». Как отмечает эксперт, ВИЭ-генерация сегодня обеспечивает 8,2% мирового потребления электроэнергии. В России же эта цифра составляет менее 1%, однако до 2020 года ее планируется увеличить до 4,5%. В частности, правительством РФ был утвержден комплекс мер стимулирования производства электроэнергии объектами ВИЭ, а Минэнерго разработало поправки в законодательство по введению поддержки ВИЭ-генерации на оптовом рынке. Главным механизмом стимулирования стал договор поставки мощности, заключаемый по итогам конкурсных отборов инвестиционных проектов суммарной мощностью до 6 ГВт до 2020 года.

«В 2009 году принята новая Энергетическая стратегия России на период до 2030 года, в которой особый акцент сделан на перспективы развития альтернативной энергетики, - рассказал Александр Масеев, ведущий научный сотрудник Института энергетической стратегии. - Согласно документу, к 2030 году доля нетрадиционных ВИЭ в отечественном энергобалансе должна составить не менее 10%». При этом, как отмечает эксперт, переход от пилотных проектов к реализации масштабной программы строительства будет невозможен без принятия всех необходимых нормативно-правовых актов.

Несмотря на ведущую роль государства, все больший интерес к развитию малой гидроэнергетики проявляют и частные компании. Так, в марте 2010 года в России была образована Ассоциация малой гидроэнергетики (АМЭ), которая объединила часть заинтересованных в развитии МГЭС российских компаний. Ключевая задача АМЭ - разработка программ и механизмов привлечения российских и иностранных инвесторов. Во многом повышение интереса к малой энергетике связано со значительным техническим прогрессом в конструировании малых гидроагрегатов. Современные МГЭС полностью автоматизированы, просты в монтаже и эксплуатации. А срок их использования достигает 40 лет. Еще пару десятилетий назад о таком невозможно было даже мечтать.

От Кавказа до Дальнего Востока

Сейчас в нашей стране строительство малых ГЭС разворачивается преимущественно на Северном Кавказе, где для этого имеются наиболее благоприятные природные условия. Все проекты по созданию сети МГЭС в этом регионе реализует «РусГидро». «Развитие малой гидроэнергетики является одним из основных направлений нашей работы в области альтернативной энергетики, - подчеркнула Александра Горшкова. - В настоящее время компания проводит актуализацию карты потенциальных створов малых ГЭС и ведет переговоры с зарубежными партнерами по реализации программы строительства и локализации производства основного оборудования объектов ВИЭ».

Уже полным ходом идет возведение Зарижской МГЭС в Кабардино-Балкарии (30,6 МВт), а в Карачаево-Черкесии прошел государственную экспертизу проект МГЭС Большой Зеленчук (1,2 МВт). Осуществляются проектирование и предварительная проработка еще целого ряда малых ГЭС. «В июне 2014 года проекты Сенгилеевской, Барсучковской, Усть-Джегутинской ГЭС успешно прошли конкурсный отбор инвестиционных проектов по строительству генерирующих объектов на основе возобновляемых источников энергии, - отметила Александра Горшкова. - Были заключены договоры, обеспечивающие инвесторам возмещение затрат в течение 15 лет с базовой доходностью до 14% годовых. Текущая же их доходность будет зависеть от доходности долгосрочных облигаций федерального займа». Планируется, что эксплуатация Сенгилеевской МГЭС (10 МВт), Барсучковской МГЭС (5,04 МВт) и Усть-Джегутинской МГЭС (5,6 МВт) начнется в 2017 году.

Большую роль в развитии отечественной малой энергетики играет обмен опытом с зарубежными коллегами. Особенно это касается китайских партнеров. В мае 2014 года в ходе визита президента РФ Владимира Путина в Шанхай между «Рус­Гидро» и PowerChina было подписано соглашение по сотрудничеству в области малой энергетики. А уже в декабре 2014 года группа экспертов из Поднебесной совершила поездку по площадкам малых ГЭС «РусГидро» на Северном Кавказе. Технические и экономические специалисты PowerChina посетили пять МГЭС - Сенгилеевскую, Барсучковскую, Усть-Джегутинскую, Верхнебалкарскую и Адыр-Су, где осмотрели площадки будущих станций и ознакомились с техническими решениями. Сейчас стороны дорабатывают текущую структуру и схему создания совместного предприятия, а также возможные варианты его финансирования.



error: Контент защищен !!